NAKIB HAIDER PROTIK

Humboldt University of Berlin

Head of Theoretical Transport Physics, Institute of Physics

- Emmy Noether Grant, DFG
- Principal investigator

Postdoc, Institute of Physics & IRIS Adlershof

- Research Fellowship, Alexander von Humboldt Foundation
- German Language Fellowship, Alexander von Humboldt Foundation ٠
- Research Fellowship, Max Planck Institute Stuttgart
- · Conducted research in the field of thermoelectric transport and superconductivity.
- Published 4 research papers.
- Gave 2 invited and 4 contributed talks.
- · Co-supervised 2 Bachelor's theses.

Catalan Institute of Nanoscience and Nanotechnology

Postdoc. Theory and Simulation

- Developed scientific software (elphbolt) for thermoelectricity simulations.
- Published 2 research papers.
- Gave 2 talks.

Harvard University

Postdoc, School of Enginee	ring & Applied Sciences	[2019 - 2021]

- · Wrote software for thermoelectricity and superconductivity simulations.
- Published 3 research papers.
- Gave 1 talk.

Boston College

PhD student, Department of Physics [2014 - 2019]

- Conference travel grants, Boston College
 - Developed an original theoretical and computational framework for thermoelectric transport simulations, solving a century-old problem.
 - Wrote scientific software for simulating thermoelectric transport.
 - Published 6 research papers.
 - Wrote 1 PhD thesis.
 - Gave 4 talks.
 - Taught undergraduate level physics.

University of Ottawa

Master's student, Department of Physics

Differential Admission Scholarship, University of Ottawa

- Implemented a many-body quantum chemistry method for studying lasermatter interactions.
- Published 2 research papers.
- Wrote 1 MSc thesis.
- Taught undergraduate level physics.
- Gave 1 talk.

Brac University

Teaching assistant, Department of Physics

• Taught undergraduate level physics and mathematics.

Bachelor's student, Department of Physics

- Highest Distinction & Vice Chancellor's Medal, Brac University
- 6-month scholarship to Romania, Erasmus Mundus
- Got training in physics (major) and computer science (minor).
- Wrote scientific software for simulating quantum field theories on noncommutative geometries.
- Wrote 1 BSc thesis.
- Gave 2 talks..

Contact

[2024 -]

[2022 - 2024]

[2021 - 2022]

- nakib.haider.protik@gmail.com
- in LinkedIn
- Research group website
- **O** Github Google Scholar

Education

- 2019 PhD Physics, Boston College
- 2013 MSc Physics, U of Ottawa
- 2010 BSc Physics, Brac U

Skills

* Physics	
+ Dosoarch	
	•••
* Project management	•••
 Scientific communication 	•••
★ Peer reviewing	•••
 Funding acquisition 	••0
★ Teaching	•••
★ Mentoring	••0
★ Software development	•••
★ Scientific computation	•••
★ High-performance computing	•••
★ Modern Fortran [coarrays and OO]	•••
★ Python [numpy, matplotlib, scipy]	••0
∗ Julia	•00
* C	••0
★ Mathematica	••0
★ Shell	••0
★ Linux	•••
★ Lisp	•00
★ ⊮TEX	•••
∗ Bangla	•••
★ English	•••
★ German	•00

Attachments

- T Research
- Π Teaching
- III Service

[2010 - 2011]

[2006 - 2010]

[2011 - 2013]

I Research

My research in on the physics of interactions and transport phenomena in condensed matter. Specifically, using *ab initio* theoretical and computational tools, I study how the scattering processes in matter – electron-phonon, phonon-phonon, phonon-defects, electron-defects, etc. – affect the transport properties. I am also generally interested in superconductivity, topological defects, and topological phases among various other topics.

Published code

A solver for the coupled and decoupled electron and phonon Boltzmann transport equations.

Theses

2019 PhD Thesis, Physics, Boston College. Topic: Theoretical/computational condensed matter physics with an emphasis on semiclassical transport. Title: Phonon and carrier transport in semiconductors from first principles. Committee: David Broido (chair), Kenneth Burch, Krzysztof Kempa, Fazel Tafti, and Natalio Mingo.
2013 MSc Thesis, Physics, University of Ottawa. Topic: Attosecond phenomena in laser-matter interaction using computational many-body quantum methods. Title: The multiconfiguration time dependent Hartree-Fock method for cylindrical systems. Advisor: Thomas Brabec.
2010 BSc Thesis, Physics, BRAC University. Topic: Numerical studies of quantum field theories on non-commutative geometries.

Topic: Numerical studies of quantum field theories on non-commutative geometric Title: *Chern-Simons action on the noncommutative plane*. Advisor: Arshad Momen.

Publications (*= equal contribution)

2024	Nakib H. Protik and Claudia Draxl. Beyond the Tamura model of phonon-isotope scattering. Physical Review B.
2023	Mahmoud Elhajhasan, Wilken Seemann, Katharina Dudde, Daniel Vaske, Gordon Callsen, Ian Rousseau, Thomas F. K. Weatherley, Jean-François Carlin, Raphaël Butté, and Nicolas Grandjean, Nakib H. Protik , and Giuseppe Romano. Joined optical and thermal characterization of a III-nitride semiconductor membrane by micro- photoluminescence spectroscopy and Raman thermometry. <i>Physical Review B</i> .
2023	Krzysztof Kempa, Nakib H. Protik , Tyler Dodge, Claudia Draxl, and Michael J. Naughton. Enhancing superconductivity with resonant anti-shielding and topological plasmon-polarons. <i>Physical Review B</i> .
2023	Yu Xie, Jonathan Vandermause, Senja Ramakers, Nakib H. Protik , Anders Johansson, and Boris Kozinsky. Uncertainty-aware molecular dynamics from Bayesian active learning for phase transformations and ther- mal transport in SiC. <i>npj Computational Materials</i> .
2023	Chunhua Li, Nakib H. Protik , Navaneetha K. Ravichandran, and David Broido. High-frequency phonons drive large phonon-drag thermopower in semiconductors at high carrier density. <i>Physical Review B</i> .
2022	Chunhua Li, Nakib H. Protik , Pablo Ordejón, and David Broido. Colossal phonon drag enhanced thermopower in lightly doped diamond. <i>Materials Today Physics</i> .
2022	Nakib H. Protik , Chunhua Li, Miguel Pruneda, David Broido, and Pablo Ordejón. The elphbolt <i>ab initio</i> solver for the coupled electron-phonon Boltzmann transport equations. <i>npj Computational Materials</i> .

2021	Zhe Cheng, Weifang Lu, Jingjing Shi, Daiki Tanaka, Nakib H. Protik , Shangkun Wang, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama, Isamu Akasaki, Hiroshi Amano, and Samuel Graham. Quasi-Ballistic Thermal Conduction in 6H-SiC. <i>Materials Today Physics</i> .
2021	Mauro Fava [*] , Nakib Haider Protik [*] , Chunhua Li, Navaneetha Krishnan Ravichandran, Jesús Carrete, Ambroise van Roekeghem, Georg K. H. Madsen, Natalio Mingo, and David Broido. How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study. <i>npj Computational Materials</i> .
2020	Nakib Haider Protik and Boris Kozinsky. Electron-phonon drag enhancement of transport properties from a fully coupled <i>ab initio</i> Boltzmann formalism. <i>Physical Review B, 102, 245202.</i>
2020	Nakib Haider Protik and David Broido. Coupled transport of phonons and carriers in semiconductors: A case study of n-doped GaAs. <i>Physical Review B</i> , 101, 075202 [Editors' Suggestion].
2019	Xueyuan Wu [*] , Jiantao Kong [*] , Nakib Haider Protik [*] , David Broido, and Krzysztof Kempa. Tailoring the electron-phonon interaction with metallic plasmonic structures. In <i>Materials Today Physics 8, 86-91</i> .
2017	Nakib Haider Protik, Ankita Katre, Lucas Lindsay, Jesús Carrete, Natalio Mingo, and David Broido. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles. In <i>Materials Today Physics</i> 1C, 31-38.
2016	Nakib Haider Protik , Jesús Carrete, Nebil A. Katcho, Natalio Mingo, and David Broido. Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide. In <i>Physical Review B</i> 94, 045207.
2014	G. Orlando, C. R. McDonald, N. H. Protik , G. Vampa, and T. Brabec. Tunneling time, what does it mean? In <i>Journal of Physics B</i> 47, 204002.
2014	G. Orlando, C. R. McDonald, N. H. Protik , and T. Brabec. Identification of the Keldysh time as a lower limit for the tunneling time. In <i>Physical Review A</i> 89, 014102.

Invited/Long Talks

2024	Nakib Haider Protik.
------	----------------------

Probing the transport of the interacting electron-phonon system self-consistently and *ab initio*. At DPG Meeting, Berlin, March 19.

- 2022 Nakib Haider Protik. Coupled transport of the interacting electron-phonon gas – state of the art and the future. At Solid State Seminar, Institute of Solid State Physics and Institute of Theoretical Physics, University of Bremen, Bremen, November 1.
- 2021 Nakib Haider Protik, Chunhua Li, Miguel Pruneda, David Broido, and Pablo Ordejón. elphbolt - A free software for coupled electron-phonon Boltzmann transport. Video here. At International Workshop on Advanced Materials-to-Device Solutions for Synaptic Electronics, Session 4, Barcelona, November 12.

Other Talks

2023	Nakib Haider Protik. Dragful electron-phonon transport – elphbolt a year and a half on. At HoW xciting! 2023, Berlin, August 9.
2023	Nakib Haider Protik and Claudia Draxl. When does the Tamura model of phonon-isotope scattering break down?. At DPG Meeting, Dresden, March 27, 2023. At APS March Meeting, Virtual, March 21.

2022	Nakib Haider Protik and Claudia Draxl. Electron-phonon drag in MgB ₂ . At DPG Meeting, Regensburg, September 7.
2022	Nakib Haider Protik, Chunhua Li, Miguel Prudena, David Broido, and Pablo Ordejón. elphbolt: An ab initio solver for the coupled and decoupled electron and phonon Boltzmann transport equations. At APS March Meeting, March 15.
2021	Nakib Haider Protik and Boris Kozinsky. Electron-phonon drag enhancement of transport properties from fully coupled <i>ab initio</i> Boltzmann for- malism. At APS March Meeting, Online, March 17.
2019	Nakib Haider Protik, Mauro Fava, Natalio Mingo, Jesús Carrete, George Madsen, Navaneetha Ravichan- dran and David Broido. Effect of substitutional defects on the thermal conductivity of boron arsenide. At APS March Meeting, Boston, March 4.
2018	Nakib Haider Protik and David Broido. Effect of plasmon-LO phonon coupling on the mobility of GaN. At APS March Meeting, Los Angeles, March 7.
2017	Nakib Haider Protik, Ankita Katre, Lucas Lindsay, Jesús Carrete, Bonny Dongre, George K. H. Madsen, Natalio Mingo, David Broido. Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles. At APS March Meeting, New Orleans, March 13.
2016	Nakib Haider Protik, Jesús Carrete, Natalio Mingo, Nebil A. Katcho and David Broido. Ab initio study of the effect of vacancies on the thermal conductivity. At APS March Meeting, Baltimore, March 15.
2014	Nakib Haider Protik. Quantum Manybody Physics (Or what I've been up to since I left BRACU). At BRAC University, Dhaka, June 19.
2013	Nakib Haider Protik. Manybody Quantum Dynamics. At Ottawa-Carleton Institute of Physics Graduate Symposia, Ottawa, April 30.
2010	Nakib Haider Protik and Arshad Momen. Simulating the Topologically Massive Maxwell Theory on the Moyal Plane. At International Conference on Recent Advance in Physics - 2010, Dhaka, March 29. Technical Session 4B: Statistical and Theoretical Physics - 1.
2009	Arshad Momen and Nakib Haider Protik . Simulating the Abelian Chern-Simons Theory on the Moyal Plane . At Physics Conference, TIM - 09, Timisoara, November 27. Section: Theoretical and Computational Physics.

II Teaching

• Teaching Assistant @ Boston College

Quantum Physics I: generating homework solutions and grading.

Intro to Physics Recitation I, II: recitations and grading.

1st year physics labs: experiments demonstration and lab report grading.

• Teaching Assistant @ University of Ottawa

Fundamentals of Applied Physics III: grading.

Advanced Optics & Introduction to Photonics: grading.

Principles of Physics I: recitations and grading.

Electricity and Magnetism: recitations and grading.

Fundamentals of Physics for Engineers: recitations and grading.

1st year physics lab: experiments demonstration and lab report grading.

• Teaching Assistant @ BRAC University

Applied Physics Lab I: lab management, experiments demonstration, exam preparation and grading.

Principles of Physics I, II labs: lab management, experiments demonstration, exam preparation and grading.

Mathematics II lab: lectures, exam preparation and grading.

• Lab Assistant @ BRAC University

Physics Lab I, III: experiments demonstration and lab report grading.

III Service

PhD thesis committee member

• International expert and jury member in Dr. Martí Raya Moreno's PhD dissertation committee at Universitat Autonoma de Barcelona.

Thesis title: Heat transport in binary semiconductor polytypes and devices based on 2D materials: an ab initio study.

Journal reviewer

• Physical Review Letters, Physical Review B, Physical Review Materials, Materials Today Physics, Acta Physica Polonica A, Journal of Physics and Chemistry of Solids

Other

- Student representative in Graduate Affairs Committee (2018-2019), Boston College.
- Graduate Teaching Committee liaison person (2017-18), Boston College.